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Abstract. The collective behaviour of a square-lattice Hodgkin-Huxley neural network model with white
noise is investigated by numerical methods. It is found that for an intermediate value of noise the Hodgkin-
Huxley neurons in the square lattice exhibit an ordered circular structure. However, as the noise level
increases, the ordered circular structures are distorted, and eventually totally destroyed. Thereby, the
constructive role of appropriately pronounced random perturbations in the studied network is revealed.
Furthermore, it is shown that as the diffusive coefficient increases, the typical width of the spatial waves
also increases accordingly, which results in a decrease of the number of cycles by a given size of the spatial
grid. More interestingly, it is observed that the spatio-temporal coherence resonance is enhanced as the
diffusive coefficient is increased. Finally, the dependence of the typical width and the average period of
the firing rate function on the diffusive coefficient is studied. Results presented in this paper should prove
valuable for the understanding of information processing of neural systems in the presence of noise.

PACS. 05.45.Xt Synchronization; coupled oscillators – 05.40.Ca Noise – 89.75.Kd Patterns

1 Introduction

In their seminal work, Hodgkin and Huxley proposed a
mathematical model of neuron functioning described by
four nonlinear differential equations, which has become an
excellent and established mathematical tool for studying
dynamical behaviour of biologically realistic neurons [1].
Thereafter, this model was called the Hodgkin-Huxley
(HH) neuron model. In the past decades, much atten-
tion was given to the constructive effects of (external or
internal) noise on an isolated HH neuron or some cou-
pled ones, where many intriguing nonlinear phenomena
have been found [2–6]. Stochastic resonance, which shows
that the HH neuron responds to periodic forcing in the
presence of noise, can exhibit a resonance-like dependence
on the noise intensity [2,3]. Coherence resonance, where
spikes of the HH neuron have a maximal regularity in
the presence of noise even without external signals, was
also reported [4,5]. Noise-induced synchronization includ-
ing internal and external noise, has been studied for the
HH neurons [6,7]. Some effects among those cases have
been observed in numerous experiments, and they may
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be very important in the signal processing in neural sys-
tems [8–11]. More interestingly, It was found [12] that the
network size, i.e. the number of HH neurons in the net-
work, has an optimal value at which the collective be-
haviour shows the best performance. However, the non-
trivial dependence on the network size could not be found
by considering only the response of an individual neuron
in the network. Hence, it is speculated that the average
output of all neurons plays a critical role in neural in-
formation processing. Importantly thus, the study of the
HH model still provides several scientific challenges, and
new phenomena are yet to be discovered. Therefore, the
aforementioned hypotheses are not conclusive today.

It is commonly accepted that a single neuron in the
vertebrate cortex connects to more than 10 000 postsynap-
tic neurons via a synapses-forming complex network [13].
On the other hand, neurons are known to be subjected to
several stochastic influences, which arise from many differ-
ent sources such is the quasi-random release of neurotrans-
mitters by synapses, random switching of ion channels,
and most importantly random synaptic inputs from other
neurons. Noisy neurons coupled via synapses can carry out
highly complex and advanced operations with cognition
and reliability [14]. As far as these perspectives are con-
cerned, it is evident that neural tissue combines features of
being both noisy and spatially extended. Therefore, a new
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and interesting nonlinear phenomenon, namely the noise-
induced pattern formation, has gained much attention in
the scientific community.

In the past, array-enhanced coherence resonance has
been studied by using an array of coupled FitzHugh-
Nagumo neurons [15]. It was shown that the coupling of
such elements leads to a significantly stronger coherence as
compared to that of a single element and parameter het-
erogeneity. It was reported that random spatio-temporal
perturbations can constructively affect the dynamics of
spatially extended systems [16]. For example, spatial co-
herence resonance has been introduced for systems near
pattern-forming instabilities [17] as well as for excitable
media [18]. It was shown that there exists an optimal noise
intensity at which the inherent spatial periodicity of the
media was resonantly pronounced. Effects of small-world
connectivity on spatial coherence resonance in excitable
media have been studied in [19]. Results show that the in-
troduction of long-range couplings can induce decoherence
of noise-induced spatial patterns observed by the regular
connectivity of spatial units. Other well-known phenom-
ena include noise enhanced and induced excitability [20],
noise-induced propagation in monostable media [21], per-
sistence of noise-induced spatial periodicity [22] as well as
noise-induced wave propagation in chemical media [23].
Furthermore, coherence resonance has also been studied
in a spatial prisoner’s dilemma game [24]. Hence, spatial
patterns that propagate through spatially extended sys-
tems on random support have become one of the most
flourishing and fascinating topics of research in the field
of nonlinear science today.

On the other hand, it is known that neural systems
may be coupled into a network and respond to the ex-
ternal noise as a whole. Motivated by many biological
network-related applications, an intriguing and significant
question arises: How are spatio-temporal patterns in a
square-lattice HH neural network affected by noise and dif-
ferent diffusive coefficients? In this paper, spatio-temporal
dynamics in a square-lattice HH neural network is stud-
ied. It is shown that there exists an intermediate noise
level, at which the HH neurons exhibit ordered circular
waves, which are destroyed as the noise level becomes
high enough. Furthermore, the effect of the diffusive co-
efficient on the spatio-temporal coherence resonance is
investigated. It is found that spatio-temporal coherence
resonance increases with the increase of the diffusive coef-
ficient. Finally, the dependence of the firing rate function
and the typical width of the spatial waves on the diffusive
coefficient is investigated, revealing some characteristic re-
lations between them.

The rest of this paper is organized as follows: in Sec-
tion 2, a square-lattice neural network comprising HH
neurons with nearest-neighbour diffusive coupling is in-
troduced, and some basic dynamics of the HH neuron are
described. In Section 3, noise-induced spatial patterns in
the network are investigated. The dependence of spatio-
temporal patterns on the diffusive coefficient is then pre-
sented and discussed in Section 4. Finally, conclusions and
discussion are given in Section 5.

2 A square-lattice HH neural network

In neural systems, the so-called electrical synapse is a
mechanical and electrically conductive link between two
abutting neurons that is formed by proteins known as gap
junctions. For this type of coupling, the synaptic current
is proportional to the difference of membrane potentials
between a neuron and its neighbors. Usually, electrical
synapses can increase the speed and coherence of neural
activity.

To understand spatio-temporal patterns of neurons
coupled by electrical synapses in the presence of noise, we
consider an ensemble of HH neurons, which are coupled
to their nearest neighbours on a two-dimensional lattice.
The dynamics of the spatial-temporal evolution of this en-
semble governed by the following differential equations:

C
dVi,j

dt
= −gNam3

i,jhi,j(Vi,j − VNa) − gKn4
i,j(Vi,j − VK)

−gL(Vi,j − VL) + I + D(Vi−1,j + Vi+1,j

+Vi,j−1 + Vi,j+1 − 4Vi,j) + σξi,j(t)
dmi,j

dt
= αmi,j (Vi,j)(1 − mi,j) − βmi,j (Vi,j)mi,j

dhi,j

dt
= αhi,j (Vi,j)(1 − hi,j) − βhi,j (Vi,j)hi,j (1)

dni,j

dt
= αni,j (Vi,j)(1 − ni,j) − βni,j (Vi,j)ni,j ,

(i, j = 1, . . . , N)

where Vi,j is the transmembrane potential of the neuron
labelled (i, j), of which the temporal evolution is governed
by the first differential equation of (1); mi,j , hi,j , and ni,j

are corresponding gating variables (probabilities) charac-
terized by two-state, opening or closing dynamics, as de-
scribed in the last three equations of (1); I represents the
external direct current. σ denotes the level of noise and ξi,j

the Gaussian noise for the (i, j)th neuron with 〈ξi,j〉 = 0,
and 〈ξi,j(t)ξm,n(t

′
)〉 = δ(t − t

′
)δi,mδj,n; D is the diffu-

sive coefficient. In the present study, periodic boundary
condition is used, namely, V0,j = VN,j, VN+1,j = V1,j ,
Vi,0 = Vi,N , Vi,N+1 = Vi,1.

The experimentally determined voltage transition
rates are given explicitly by the following expressions:

αmi,j (Vi,j) =
0.1(Vi,j + 10)

1 − exp[− (Vi,j+40)
10 ]

βmi,j (Vi,j) = 4exp
[
− (Vi,j + 65)

18

]

αhi,j (Vi,j) = 0.07exp
[
− (Vi,j + 65)

20

]

βhi,j (Vi,j) =
{

1 + exp
[
− (Vi,j + 35)

10

]}−1

αni,j (Vi,j) =
0.01(Vi,j + 55)

1 − exp[− (Vi,j+55)
10 ]

βni,j (Vi,j) = 0.125exp
[
− (Vi,j + 65)

80

]
. (2)
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Fig. 1. Time series of an HH neuron at the different noise levels. The noise level σ is: (a) 0.1, (b) 10, (c) 60, respectively.

Table 1. The values of parameters.

Membrane capacitance C = 1 (µF/cm2)

Conductance constants (mS/cm2)
gNa = 120, gK = 36, gL = 0.3

Reversal potentials (mV)
VNa = 50, VK = −77, VL = −54.4

The values of the parameters that appear in the above
equations are listed in Table 1.

For a single HH neuron in the absence of noise (σ =
0), a limit cycle appears at the external direct current
I = I1 ≈ 6.2 µA/cm2 due to a saddle-node bifurcation of
a periodic solution. However, the unstable branch of the
periodic solution dies out at I = I2 ≈ 9.8 µA/cm2 through
an inverse Hopf bifurcation. Thus, when I < I1, the rest-
ing state is a globally stable equilibrium point, whereas
for I1 < I < I2 the system has two stable attractors, a
fixed point and a limit cycle. A more detailed bifurcation
analysis of the HH neuron was presented in [5]. Here, we
are interested in the parameter region near the onset of

the saddle-node bifurcation of the periodic orbit. In this
excitable region, neurons are unable to fire spontaneously
in the absence of noise. In all subsequent calculations, we
set I = 6.1 µA/cm2 such that each neuron in this network
stays at the excitable steady state.

When a single HH neuron, located at the excitable
steady state, responds to a suitable intensity of noise,
noise-induced spikes can be observed as shown in Figure 1,
and the number of the spikes increases in a given time in-
terval as the noise level increases. The stochastic dynam-
ics of the HH neuron near a bifurcation point, stochastic
resonance and coherence resonance have been studied ex-
tensively before. Results show that there exists an optimal
noise level, at which temporal order of the HH neuron is
maximal.

3 Spatial patterns of the HH neural network
in the presence of noise

In this section, we focus on spatial patterns in the above-
described square-lattice HH neural network in the pres-
ence of noise. Noise-induced ordered circular structures
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Fig. 2. Spatial pattern formation in the square-lattice HH
neural network for different levels of noise. All figures depict
values of Vi,j on a 128× 128 square grid at a given time t. The
noise level σ is: (a) 0.01, (b) 5, (c) 15, (d) 25, (e) 30, (f) 60,
respectively. Here, the diffusive coefficient is D = 0.5.

can be observed at an intermediate noise level, which
are destroyed when the noise level becomes high enough.
Hence, there exists an intermediate noise level, at which
the spatial dynamics exhibits maximal order.

In what follows, a detailed analysis will be presented to
explain the variation of spatial patterns as the noise level
is changed. Figure 2 shows some typical spatial patterns
for different noise levels in a HH neural network of size
128×128 (in this paper, N is always 128). It is observed in
Figure 2a that for lower noise levels, neurons don’t exhibit
large-amplitude spikes, and hence an outstanding spatial
structure is absent. On the other hand, for an interme-
diate noise level, noise-induced patterns emerge in space,
which orderly propagate across the spatial grid in form of
circular waves as shown in Figures 2b and 2c. It is obvious
that spatial patterns of the circular structure are charac-
terized by layers with one smaller cycle being surrounded
by other larger one. Furthermore, the number of ordered
cycles increases with the increment of the noise level.

However, Figures 2d and 2e show that as the noise level
increases further, ordered spatial patterns are distorted by
strong noisy perturbations. Fact is that larger intensities

of noise induce random firings of individual neurons, which
ultimately results in lack of order in the spatial domain.
Thus, when the noise level is high enough, ordered circular
structures cannot persist and are replaced by disordered
random portraits as observed in Figure 2f. In sum, it is
shown that there exists an intermediate level of noise at
which ordered patterns in the square-lattice HH neurons
are resonantly pronounced and ordered. This scenario is
characteristic for the solely noise-induced pattern forma-
tion, or as introduced in [17,18], the so-called spatial co-
herence resonance.

4 Dependence of spatio-temporal patterns
on the diffusive coefficient

However, since it is impossible to present spatial patterns
in continuous time, we try to capture the essence of the
resonant dynamics by defining a firing-rate function Π , as
follows. For a rough illustration of firing behaviour of a
single HH neuron, a neuron is said to be firing when the
membrane potential of the neuron V reaches the threshold
value Vth = 0 from below at a given time. If m neurons
are fired simultaneously at a given time t, then Π(t, m) =
m/N2. It is obvious that Π(t, m) is a function of time t
and space m. This statistical function simply measures
the fraction of fired neurons on the lattice at any given
time. Clearly, if Π(t, m) = 0, this means that none of the
neurons is perturbed strong enough for V to exceed the
threshold Vth, while Π(t, m) = 1 indicates that all neurons
are simultaneously in the firing state at the given time t,
which constitutes global synchrony and thus corresponds
to the most ordered temporal dynamics in this square-
lattice HH neural network.

In what follows, we study the effect of the diffusive co-
efficient on the spatio-temporal patterns in this network
in terms of the firing rate function. Results show the en-
hancement of spatio-temporal coherence resonance as the
diffusive coefficient increases. Finally, the average period
of the firing rate function and a typical width of the spatial
waves are investigated statistically.

4.1 Enhancement of spatio-temporal coherence
resonance

It has been demonstrated clearly that spatio-temporal
noise plays a significant role by the spatial pattern for-
mation in the square-lattice HH neural network. However,
one may wonder how the spatio-temporal patterns in the
network depend on the diffusive coefficient. Figures 3a–3c
show the characteristic spatial patterns of this network
for different diffusive coefficients D. It is observed that
as D is increased, the number of cycles in the spatial do-
main decreases. More interestingly, it is found that the
typical width of circular waves becomes larger as D in-
creases. Since a larger D leads to a faster diffusive spread,
local excitations can propagate further through space in
a given amount of time. Hence, it is understandable that
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D=0.75 (a) D=1 (b) 

D=1.5 (c) 

Fig. 3. Spatial pattern formation in the square-lattice HH
neural network for different diffusive coefficients. All figures
depict the values of V(i,j) on a 128×128 square grid at a given
time t. The diffusive coefficient D is: (a) 0.75, (b) 1, (c) 1.5,
respectively. Here, the noise level is σ = 25.

the characteristic width of the spatial waves increases as
D increases.

Intuitively, it is not clear why the spatio-temporal co-
herence resonance increases or decreases when the diffu-
sive coefficient increases as a result of two opposite effects,
one associated with the decrease of the number of cycles
and the other with the increase of width. However, a ba-
sic property of the firing rate function may guide us to
understand this phenomenon very well. It is observed in
Figure 4 that the fluctuation amplitude of the firing rate
function becomes large as D is increased, which implies
the enhancement of the spatio-temporal coherence reso-
nance. To further explain this, Figure 5a shows the power
spectrum density of the firing rate function for different
diffusive coefficients at the noise level σ = 25. It is obvi-
ous that the highest peak of the power spectrum density
exhibits an increase as the diffusive coefficient increases.

To quantitatively characterize the coherence of the
spatio-temporal motion, we employ the time series of the
firing rate function, whose amplitude and temporal co-
herence reflect the spatial and temporal coherence in the
lattice, respectively, to define a spatio-temporal coherence
quantity [25],

β = H
ωp

∆ω
, (3)

where ωp is the frequency of the main peak in the spectrum
of Π , H is the peak height mainly depending on the ampli-
tude of Π , and ∆ω is the half-width of the peak, reflecting
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Fig. 4. The corresponding firing-rate functions of Figure 3.

the temporal randomness of Π . In Figure 5b, β is shown as
a function of the diffusive coefficient D for the noise level
σ = 25. It is observed that the coherence quantity β is
increases as the diffusive coefficient becomes larger, which
implies the enhancement of the spatio-temporal coherence
resonance.

4.2 Characteristics of the firing rate function
and spatial waves

In particular, we found in Figure 7a that the average pe-
riod of the firing rate function increases as the diffusive
coefficient is increased. Moreover, it is observed that there
exists an approximate linear relation between the average
period of the firing rate function and the diffusive coeffi-
cient. Numerical results are in good accordance with the
linear function 〈T 〉 = 2.652D + 9.158. The mechanism of
variation of the average period can be understood as fol-
lows: larger D not only constitute faster diffusive spread,
which results in wider waves, but can also make local ex-
citations tend to die out more quickly. Thus, most neu-
rons in this network cannot leave their steady states for
firing until a stronger stimulus is accumulated, which re-
sults in an enhancement of the average period. Moreover,
since a nonlinear selection of threshold-crossing events in
excitable systems is absent, it is understandable that the
dependence of the average period on the diffusive coeffi-
cient obeys to a linear relation.
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Fig. 5. (a) Variations of the power spectrum density for dif-
ferent diffusive coefficients. (b) The coherence quantity β vs.
the diffusive coefficient D.

It was remarked in [26] that the typical width of a
particular circular wave in the square-lattice Rulkov-map
neural network could be estimated in terms of the statisti-
cal relation: W =

√
τD. Here, τ ∝ ne = constant and ne is

the excursion time, which was given by the width of spikes
depicted in the temporal plots of Figure 1. Figure 6 shows
an estimation of the typical width of a particular circular
wave. Dependence of W on D is shown in Figure 7b, with
τ ≈ 5.9820. It is evident that the values obtained here
are in excellent agreement with the predicted square-root
function, which reflects a fixed excursion time ne, charac-
teristic for excitable systems, thus shedding light on the
noise-induced pattern formation in the presently studied
spatially extended system.

5 Conclusions and discussion

Spatio-temporal patterns in a square-lattice HH neural
network with nearest diffusive coupling have been stud-
ied. Results show that there exist ordered circular waves
with a layered structure in this network at an intermediate
noise level. As the noise level increases, the ordered cir-
cular waves become deformed, and finally transform into
random patterns. The characteristics of noise-induced pat-
terns have also been investigated in dependence on the
diffusive coefficient. It is found that the spatio-temporal
coherence resonance characterized by the coherence quan-
tity β is increased as the diffusive coefficient increases.

Fig. 6. Explanation of the typical width of waves. Arrows
indicate the typical width of the waves, which can be seen to
be constant.
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Fig. 7. (a) Dependence of the average period on the diffusive
coefficient; circles denote the evaluated average period, while
the curve is the fitting 〈T 〉 = 2.652D+9.158. (b) Dependence of
the width of the wave on the diffusive coefficient; diamonds de-
note the evaluated typical width of the waves, while the curve
is the predicted W =

√
τD dependence for τ = 5.9820. Here,

the noise level is σ = 25.
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Moreover, the average period of the firing rate function ex-
hibits good linear curve-fitting. Furthermore, by studying
the dependence of the typical width of emergent circular
waves on various diffusive coefficient values D, it is found
that the typical wave width W increases with the square
root of D, thereby confirming the explanation given in
reference [26].

Several past studies have shown that higher central
nervous systems can actually utilize noise to enhance sen-
sory information. For example, it enhances the human
tactile sensation, the human visual perception, and the
animal feeding behaviour [9]. We have adopted a more re-
alistic biological Hodgkin-Huxely neuron model to study
spatial patterns, so as to get better insight into the infor-
mation processing function of the central nervous system
in the presence of noise. Our results show that spatially
extended HH neuron models can collectively respond to
external noise in the form of ordered circular waves at an
intermediate noise level. This is closely related to the ex-
istence of resonance, confirmed by recent studies in the
human brain [8–11]. Nowadays, many humans live in an
environment that is full of stochastic influences and unpre-
dictability. Therefore, it is important to study how noise
affects the functioning of neural systems. Only by this
can the concept of noise-enhanced sensation be further
developed into techniques and devices so as to help stroke
patients and those with muscle and joint injuries in re-
habilitating activities. Hence, it is extremely important
to provide deeper insight into how stochastic fluctuations
might affect neural functioning. Results in this paper may
provide a better understanding of the generation of spatio-
temporal patterns in such neural systems.

We hope to thank referee for valuable comments. This work
was supported by the National Natural Science Foundation of
China (No. 10432010, Nos. 10572011 and 10672006).
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